3.144 \(\int \frac{1}{\sqrt [3]{a-b x^2} (3 a+b x^2)} \, dx\)

Optimal. Leaf size=204 \[ \frac{\tan ^{-1}\left (\frac{\sqrt{3} \sqrt [6]{a} \left (\sqrt [3]{a}-\sqrt [3]{2} \sqrt [3]{a-b x^2}\right )}{\sqrt{b} x}\right )}{2\ 2^{2/3} \sqrt{3} a^{5/6} \sqrt{b}}+\frac{\tanh ^{-1}\left (\frac{\sqrt{b} x}{\sqrt [6]{a} \left (\sqrt [3]{2} \sqrt [3]{a-b x^2}+\sqrt [3]{a}\right )}\right )}{2\ 2^{2/3} a^{5/6} \sqrt{b}}+\frac{\tan ^{-1}\left (\frac{\sqrt{3} \sqrt{a}}{\sqrt{b} x}\right )}{2\ 2^{2/3} \sqrt{3} a^{5/6} \sqrt{b}}-\frac{\tanh ^{-1}\left (\frac{\sqrt{b} x}{\sqrt{a}}\right )}{6\ 2^{2/3} a^{5/6} \sqrt{b}} \]

[Out]

ArcTan[(Sqrt[3]*Sqrt[a])/(Sqrt[b]*x)]/(2*2^(2/3)*Sqrt[3]*a^(5/6)*Sqrt[b]) + ArcTan[(Sqrt[3]*a^(1/6)*(a^(1/3) -
 2^(1/3)*(a - b*x^2)^(1/3)))/(Sqrt[b]*x)]/(2*2^(2/3)*Sqrt[3]*a^(5/6)*Sqrt[b]) - ArcTanh[(Sqrt[b]*x)/Sqrt[a]]/(
6*2^(2/3)*a^(5/6)*Sqrt[b]) + ArcTanh[(Sqrt[b]*x)/(a^(1/6)*(a^(1/3) + 2^(1/3)*(a - b*x^2)^(1/3)))]/(2*2^(2/3)*a
^(5/6)*Sqrt[b])

________________________________________________________________________________________

Rubi [A]  time = 0.0289102, antiderivative size = 204, normalized size of antiderivative = 1., number of steps used = 1, number of rules used = 1, integrand size = 24, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.042, Rules used = {393} \[ \frac{\tan ^{-1}\left (\frac{\sqrt{3} \sqrt [6]{a} \left (\sqrt [3]{a}-\sqrt [3]{2} \sqrt [3]{a-b x^2}\right )}{\sqrt{b} x}\right )}{2\ 2^{2/3} \sqrt{3} a^{5/6} \sqrt{b}}+\frac{\tanh ^{-1}\left (\frac{\sqrt{b} x}{\sqrt [6]{a} \left (\sqrt [3]{2} \sqrt [3]{a-b x^2}+\sqrt [3]{a}\right )}\right )}{2\ 2^{2/3} a^{5/6} \sqrt{b}}+\frac{\tan ^{-1}\left (\frac{\sqrt{3} \sqrt{a}}{\sqrt{b} x}\right )}{2\ 2^{2/3} \sqrt{3} a^{5/6} \sqrt{b}}-\frac{\tanh ^{-1}\left (\frac{\sqrt{b} x}{\sqrt{a}}\right )}{6\ 2^{2/3} a^{5/6} \sqrt{b}} \]

Antiderivative was successfully verified.

[In]

Int[1/((a - b*x^2)^(1/3)*(3*a + b*x^2)),x]

[Out]

ArcTan[(Sqrt[3]*Sqrt[a])/(Sqrt[b]*x)]/(2*2^(2/3)*Sqrt[3]*a^(5/6)*Sqrt[b]) + ArcTan[(Sqrt[3]*a^(1/6)*(a^(1/3) -
 2^(1/3)*(a - b*x^2)^(1/3)))/(Sqrt[b]*x)]/(2*2^(2/3)*Sqrt[3]*a^(5/6)*Sqrt[b]) - ArcTanh[(Sqrt[b]*x)/Sqrt[a]]/(
6*2^(2/3)*a^(5/6)*Sqrt[b]) + ArcTanh[(Sqrt[b]*x)/(a^(1/6)*(a^(1/3) + 2^(1/3)*(a - b*x^2)^(1/3)))]/(2*2^(2/3)*a
^(5/6)*Sqrt[b])

Rule 393

Int[1/(((a_) + (b_.)*(x_)^2)^(1/3)*((c_) + (d_.)*(x_)^2)), x_Symbol] :> With[{q = Rt[-(b/a), 2]}, Simp[(q*ArcT
an[Sqrt[3]/(q*x)])/(2*2^(2/3)*Sqrt[3]*a^(1/3)*d), x] + (Simp[(q*ArcTanh[(a^(1/3)*q*x)/(a^(1/3) + 2^(1/3)*(a +
b*x^2)^(1/3))])/(2*2^(2/3)*a^(1/3)*d), x] - Simp[(q*ArcTanh[q*x])/(6*2^(2/3)*a^(1/3)*d), x] + Simp[(q*ArcTan[(
Sqrt[3]*(a^(1/3) - 2^(1/3)*(a + b*x^2)^(1/3)))/(a^(1/3)*q*x)])/(2*2^(2/3)*Sqrt[3]*a^(1/3)*d), x])] /; FreeQ[{a
, b, c, d}, x] && NeQ[b*c - a*d, 0] && EqQ[b*c + 3*a*d, 0] && NegQ[b/a]

Rubi steps

\begin{align*} \int \frac{1}{\sqrt [3]{a-b x^2} \left (3 a+b x^2\right )} \, dx &=\frac{\tan ^{-1}\left (\frac{\sqrt{3} \sqrt{a}}{\sqrt{b} x}\right )}{2\ 2^{2/3} \sqrt{3} a^{5/6} \sqrt{b}}+\frac{\tan ^{-1}\left (\frac{\sqrt{3} \sqrt [6]{a} \left (\sqrt [3]{a}-\sqrt [3]{2} \sqrt [3]{a-b x^2}\right )}{\sqrt{b} x}\right )}{2\ 2^{2/3} \sqrt{3} a^{5/6} \sqrt{b}}-\frac{\tanh ^{-1}\left (\frac{\sqrt{b} x}{\sqrt{a}}\right )}{6\ 2^{2/3} a^{5/6} \sqrt{b}}+\frac{\tanh ^{-1}\left (\frac{\sqrt{b} x}{\sqrt [6]{a} \left (\sqrt [3]{a}+\sqrt [3]{2} \sqrt [3]{a-b x^2}\right )}\right )}{2\ 2^{2/3} a^{5/6} \sqrt{b}}\\ \end{align*}

Mathematica [C]  time = 0.0296787, size = 162, normalized size = 0.79 \[ \frac{9 a x F_1\left (\frac{1}{2};\frac{1}{3},1;\frac{3}{2};\frac{b x^2}{a},-\frac{b x^2}{3 a}\right )}{\sqrt [3]{a-b x^2} \left (3 a+b x^2\right ) \left (2 b x^2 \left (F_1\left (\frac{3}{2};\frac{4}{3},1;\frac{5}{2};\frac{b x^2}{a},-\frac{b x^2}{3 a}\right )-F_1\left (\frac{3}{2};\frac{1}{3},2;\frac{5}{2};\frac{b x^2}{a},-\frac{b x^2}{3 a}\right )\right )+9 a F_1\left (\frac{1}{2};\frac{1}{3},1;\frac{3}{2};\frac{b x^2}{a},-\frac{b x^2}{3 a}\right )\right )} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[1/((a - b*x^2)^(1/3)*(3*a + b*x^2)),x]

[Out]

(9*a*x*AppellF1[1/2, 1/3, 1, 3/2, (b*x^2)/a, -(b*x^2)/(3*a)])/((a - b*x^2)^(1/3)*(3*a + b*x^2)*(9*a*AppellF1[1
/2, 1/3, 1, 3/2, (b*x^2)/a, -(b*x^2)/(3*a)] + 2*b*x^2*(-AppellF1[3/2, 1/3, 2, 5/2, (b*x^2)/a, -(b*x^2)/(3*a)]
+ AppellF1[3/2, 4/3, 1, 5/2, (b*x^2)/a, -(b*x^2)/(3*a)])))

________________________________________________________________________________________

Maple [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int{\frac{1}{b{x}^{2}+3\,a}{\frac{1}{\sqrt [3]{-b{x}^{2}+a}}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(-b*x^2+a)^(1/3)/(b*x^2+3*a),x)

[Out]

int(1/(-b*x^2+a)^(1/3)/(b*x^2+3*a),x)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{{\left (b x^{2} + 3 \, a\right )}{\left (-b x^{2} + a\right )}^{\frac{1}{3}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(-b*x^2+a)^(1/3)/(b*x^2+3*a),x, algorithm="maxima")

[Out]

integrate(1/((b*x^2 + 3*a)*(-b*x^2 + a)^(1/3)), x)

________________________________________________________________________________________

Fricas [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(-b*x^2+a)^(1/3)/(b*x^2+3*a),x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{\sqrt [3]{a - b x^{2}} \left (3 a + b x^{2}\right )}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(-b*x**2+a)**(1/3)/(b*x**2+3*a),x)

[Out]

Integral(1/((a - b*x**2)**(1/3)*(3*a + b*x**2)), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{{\left (b x^{2} + 3 \, a\right )}{\left (-b x^{2} + a\right )}^{\frac{1}{3}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(-b*x^2+a)^(1/3)/(b*x^2+3*a),x, algorithm="giac")

[Out]

integrate(1/((b*x^2 + 3*a)*(-b*x^2 + a)^(1/3)), x)